کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
556000 1451326 2009 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A forward/backward principal component analysis of Landsat-7 ETM+ data to enhance the spectral signal of burnt surfaces
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر سیستم های اطلاعاتی
پیش نمایش صفحه اول مقاله
A forward/backward principal component analysis of Landsat-7 ETM+ data to enhance the spectral signal of burnt surfaces
چکیده انگلیسی

In this paper, principal component analysis (PCA), a dimensionality reduction method, has been applied successfully as an image enhancement technique to improve the spectral signal of burnt surfaces. Forward/backward PCA (F/B PCA) and image differencing, which the proposed method consists of, creates a new spectral space that preserves the original spectral patterns while enhancing particular structures of the original satellite data. Burnt surfaces constitute a spectrally enhanced feature after selective removal of spectral information from the original Landsat-7 Enhanced Thematic Mapper data.Improvement of the spectral separability of burnt surfaces is most evident in spectral channels ETM+4 and ETM+7, where burnt surfaces already compose distinct spectral objects, and channels ETM+2 and ETM+5. This improvement is reasonable since the third PC axis, which is not considered in the back-transformation, is composed mainly of the spectral information in these channels. Another benefit of the technique is a reduction of interband correlation in the satellite data.No clear differences between the standardized and non-standardized F/B PCA were identified to recommend the use of one over the other. Both methods show advances in certain aspects. Finally, an increase of the separability value between burnt areas and dry vegetated areas from 0.473 to 1.06 and 1.31 was obtained with the use of the standardized and non-standardized F/B PCA, respectively.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISPRS Journal of Photogrammetry and Remote Sensing - Volume 64, Issue 1, January 2009, Pages 37–46
نویسندگان
, , ,