کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
55672 47061 2011 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mechanism of the catalytic gas-phase aldehyde production from trinuclear W3S4 complexes bearing W-OEt groups
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
پیش نمایش صفحه اول مقاله
Mechanism of the catalytic gas-phase aldehyde production from trinuclear W3S4 complexes bearing W-OEt groups
چکیده انگلیسی

Collision induced dissociation experiments of the alkoxo [W3S4(dmpe)2(O)(OCH2CH3)]+ tungsten (IV) cation reveal that aldehyde elimination is the dominant reaction pathway. Complementary deuterium labelling experiments give support to a hydrogen transfer mechanism, where the hydrogen atom exclusively originates from the α-position of the alkoxo ligand. On the basis of DFT calculations, two competitive mechanisms are proposed: one of them involving a proton transfer from the α-position of the alkoxo ligand to an oxygen atom of the vicinal WO group; the other corresponding to a hydride transfer mechanism from the α-position of the alkoxo ligand to the geminate tungsten center. The calculated energy profiles show that the former is thermodynamically favoured and the second is kinetically favoured, with small energy differences between the two reaction paths; in consequence, both mechanisms compete under our experimental conditions. The proton transfer mechanism occurs through a seven-membered transition state structure while hydride transfer takes place through a four-center structure defined by the metal and the oxygen, carbon and hydrogen atoms of the ethoxo group.

Figure optionsDownload high-quality image (149 K)Download as PowerPoint slideHighlights
► Aldehyde elimination from W(IV)-alkoxo complexes.
► Combined collision induced dissociation experiments with theoretical studies.
► Hydrogen atoms originate from the α-position of the alkoxo ligand.
► Two competitive mechanisms for hydrogen transfer: proton vs. hydride migration.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Catalysis Today - Volume 177, Issue 1, 22 November 2011, Pages 72–78
نویسندگان
, , , , ,