کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
558404 874922 2008 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cross-validation and aggregated EM training for robust parameter estimation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Cross-validation and aggregated EM training for robust parameter estimation
چکیده انگلیسی

A new maximum likelihood training algorithm is proposed that compensates for weaknesses of the EM algorithm by using cross-validation likelihood in the expectation step to avoid overtraining. By using a set of sufficient statistics associated with a partitioning of the training data, as in parallel EM, the algorithm has the same order of computational requirements as the original EM algorithm. Another variation uses an approximation of bagging to reduce variance in the E-step but at a somewhat higher cost. Analyses using GMMs with artificial data show the proposed algorithms are more robust to overtraining than the conventional EM algorithm. Large vocabulary recognition experiments on Mandarin broadcast news data show that the methods make better use of more parameters and give lower recognition error rates than standard EM training.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Speech & Language - Volume 22, Issue 2, April 2008, Pages 185–195
نویسندگان
, ,