کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
560215 1451869 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Info-gap robustness of an input signal optimization algorithm for damage detection
ترجمه فارسی عنوان
استحکام اطلاعاتی شکاف الگوریتم بهینه سازی ورودی برای تشخیص آسیب
کلمات کلیدی
تئوری تصمیم گیری اطلاعات عدم قطعیت، نظارت بر سلامت سازمانی، بهینه سازی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی


• IGDT is used to assess the robustness of an optimal input signal designing technique.
• The case of uncertainty affecting the parameters of a 2-DOF system is analyzed.
• It can be critical when affecting the masses or the linear stiffnesses values.
• Small influence is due to changes in the nonlinear stiffnesses or the damping ratios.
• The analyzed algorithm has shown to be robust to variations in the damage level.

Info-Gap Decision Theory is adopted to assess the robustness of a technique aimed at identifying the optimal excitation signal to be used for active sensing approaches to damage detection. Here the term “active sensing” refers to procedures where a known input is applied to the structure to enhance the damage detection process. Given limited system response measurements and ever-present physical limits on the level of excitation, the ultimate goal of the mentioned technique is to improve the detectability of damage by increasing the difference between measured outputs of the undamaged and damaged systems. In particular, a two degree-of-freedom mass–spring–damper system characterized by the presence of a nonlinear stiffness is considered. Uncertainty is introduced to the system in the form of deviations of its parameters (mass, stiffness, damping ratio) from their nominal values. Variations in the performance of the mentioned technique are then evaluated both in terms of changes in the estimated difference between the responses of the damaged and undamaged systems and in terms of deviations of the identified optimal input signal from its nominal estimation. Finally, plots of the performances of the analyzed algorithm for different levels of uncertainty are obtained, enabling a clear evaluation of the risks connected with designing excitation signals for damage detection, when the parameters that dictate system behavior (e.g. stiffness, mass) are poorly characterized or improperly modeled.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mechanical Systems and Signal Processing - Volumes 50–51, January 2015, Pages 1–10
نویسندگان
, , ,