کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
562405 1451951 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An algebraic fractional order differentiator for a class of signals satisfying a linear differential equation
ترجمه فارسی عنوان
تابع تقسیم جبری برای یک کلاس سیگنال رضایت یک معادله دیفرانسیل خطی
کلمات کلیدی
اختلاف نظم جزئی. مشتق شده از ریمان لیوویل، روش پارامتر جبری، روش توابع مدولاسیون، ورودی نامعلوم، تجزیه و تحلیل خطای نویز
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی


• A new algebraic formula for the Riemann–Liouville derivative is derived.
• The input can be unknown or known with noises.
• It can be used to estimate a derivative with an arbitrary order in discrete noisy case.
• An error bound for noisy errors is provided, which is useful for the selection of the design parameter.

This paper aims at designing a digital fractional order differentiator for a class of signals satisfying a linear differential equation to estimate fractional derivatives with an arbitrary order in noisy case, where the input can be unknown or known with noises. Firstly, an integer order differentiator for the input is constructed using a truncated Jacobi orthogonal series expansion. Then, a new algebraic formula for the Riemann–Liouville derivative is derived, which is enlightened by the algebraic parametric method. Secondly, a digital fractional order differentiator is proposed using a numerical integration method in discrete noisy case. Then, the noise error contribution is analyzed, where an error bound useful for the selection of the design parameter is provided. Finally, numerical examples illustrate the accuracy and the robustness of the proposed fractional order differentiator.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 116, November 2015, Pages 78–90
نویسندگان
, , , ,