کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
563170 875474 2009 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Complex ICA using generalized uncorrelating transform
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Complex ICA using generalized uncorrelating transform
چکیده انگلیسی

An extension of the whitening transformation for complex random vectors, called the generalized uncorrelating transformation (GUT), is introduced. GUT is a generalization of the strong-uncorrelating transform [J. Eriksson, V. Koivunen, Complex-valued ICA using 2nd-order statistics, in: Proceedings of the IEEE Workshop on Machine Learning for Signal Processing (MLSP’04), Sao Luis, Brazil, 2004] based upon generalized estimators of the covariance and pseudo-covariance matrix, called the scatter matrix and spatial pseudo-scatter matrix, respectively. Depending on the selected scatter and spatial pseudo-scatter matrix, GUT estimators can have largely different statistical properties. Special emphasis is put on robust GUT estimators. We show that GUT is a separating matrix estimator for complex-valued independent component analysis (ICA) when at most one source random variable possess circularly symmetric distribution and sources do not have identical distribution. In the context of ICA, our approach is computationally attractive as it is based on straightforward matrix computations. Simulations and examples are used to confirm reliable performance of our method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 89, Issue 4, April 2009, Pages 365–377
نویسندگان
, ,