کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
564348 875593 2010 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Projected gradient method for kernel discriminant nonnegative matrix factorization and the applications
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Projected gradient method for kernel discriminant nonnegative matrix factorization and the applications
چکیده انگلیسی

Nonnegative matrix factorization (NMF) is a technique for analyzing the data structure when nonnegative constraints are imposed. However, NMF aims at minimizing the objective function from the viewpoint of data reconstruction and thus it may produce undesirable performances in classification tasks. In this paper, we develop a novel NMF algorithm (called KDNMF) by optimizing the objective function in a feature space under nonnegative constraints and discriminant constraints. The KDNMF method exploits the geometrical structure of data points and seeks the tradeoff between data reconstruction errors and the geometrical structure of data. The projected gradient method is used to solve KDNMF since directly using the multiplicative update algorithm to update nonnegative matrices is impractical for Gaussian kernels. Experiments on facial expression images and face images are conducted to show the effectiveness of the proposed method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 90, Issue 7, July 2010, Pages 2150–2163
نویسندگان
, , ,