کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
564413 875598 2010 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Broadband ML estimation under model order uncertainty
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Broadband ML estimation under model order uncertainty
چکیده انگلیسی

The number of signals hidden in data plays a crucial role in array processing. When this information is not available, conventional approaches apply information theoretic criteria or multiple hypothesis tests to simultaneously estimate model order and parameter. These methods are usually computationally intensive, since ML estimates are required for a hierarchy of nested models. In this contribution, we propose a computationally efficient solution to avoid this full search procedure and address issues unique to the broadband case. Our max-search approach computes ML estimates only for the maximally hypothesized number of signals, and selects relevant components through hypothesis testing. Furthermore, we introduce a criterion based on the rank of the steering matrix to reduce indistinguishable components caused by overparameterization. Numerical experiments show that despite model order uncertainty, the proposed method achieves comparable estimation and detection accuracy as standard methods, but at much lower computational expense.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 90, Issue 5, May 2010, Pages 1350–1356
نویسندگان
, , ,