کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
566011 1452024 2016 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sparse modeling of neural network posterior probabilities for exemplar-based speech recognition
ترجمه فارسی عنوان
مدل سازی انعطاف پذیر شبکه های عصبی مصنوعی برای تشخیص گفتار مبتنی بر نمونه
کلمات کلیدی
شناسایی خودکار گفتار، ویژگی های خلفی شبکه عصبی عمیق، سنجش فشاری، کلمات کلیدی خلفی، یادگیری فرهنگ لغت مدل سازی انعطاف پذیر
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی


• Automatic speech recognition can be cast as a realization of compressive sensing.
• Posterior probabilities are suitable features for exemplar-based sparse modeling.
• Posterior-based sparse representation meets statistical speech recognition formalism.
• Dictionary learning reduces collection size of exemplars and improves the performance.
• Collaborative hierarchical sparsity exploits temporal information in continuous speech.

In this paper, a compressive sensing (CS) perspective to exemplar-based speech processing is proposed. Relying on an analytical relationship between CS formulation and statistical speech recognition (Hidden Markov Models – HMM), the automatic speech recognition (ASR) problem is cast as recovery of high-dimensional sparse word representation from the observed low-dimensional acoustic features. The acoustic features are exemplars obtained from (deep) neural network sub-word conditional posterior probabilities. Low-dimensional word manifolds are learned using these sub-word posterior exemplars and exploited to construct a linguistic dictionary for sparse representation of word posteriors. Dictionary learning has been found to be a principled way to alleviate the need of having huge collection of exemplars as required in conventional exemplar-based approaches, while still improving the performance. Context appending and collaborative hierarchical sparsity are used to exploit the sequential and group structure underlying word sparse representation. This formulation leads to a posterior-based sparse modeling approach to speech recognition. The potential of the proposed approach is demonstrated on isolated word (Phonebook corpus) and continuous speech (Numbers corpus) recognition tasks.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Speech Communication - Volume 76, February 2016, Pages 230–244
نویسندگان
, , ,