کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
566240 1451937 2017 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sparse modeling of chroma features
ترجمه فارسی عنوان
مدل سازی پراکنده از ویژگی های رنگی ☆
کلمات کلیدی
رنگی؛ برآورد چند زمین؛ مدل سازی پراکنده؛ مدولاسیون دامنه؛ مسدود sparsity؛ ADMM
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی


• Two chroma estimators are proposed, exploiting the harmonic structure of music.
• A sparse modeling framework is used, not requiring explicit model order knowledge.
• One estimator assumes stationarity, promoting chroma with spectrally smooth partials.
• One estimator allows for amplitude modulation by using a B-spline representation.
• A Cramér–Rao lower bound is derived for the chroma-specific signal model.

This work treats the estimation of chroma features for harmonic audio signals using a sparse reconstruction framework. Chroma has been used for decades as a key tool in audio analysis, and is typically formed using a periodogram-based approach that maps the fundamental frequency of a musical tone to its corresponding chroma. Such an approach often leads to problems with tone ambiguity. We address this ambiguity via sparse modeling, allowing us to appropriately penalize ambiguous estimates while taking the harmonic structure of tonal audio into account. Furthermore, we also allow for signals to have time-varying envelopes. Using a spline-based amplitude modulation of the chroma dictionary, the presented estimator is able to model longer frames than what is conventional for audio, as well as to model highly time-localized signals, and signals containing sudden bursts, such as trumpet or trombone signals. Thus, we may retain more signal information as compared to alternative methods. The performances of the proposed methods are evaluated by analyzing the average estimation errors for synthetic signals, as compared to the Cramér–Rao lower bound, and by visual inspection for estimates of real instrument signals. The results show strong visual clarity, as compared to other commonly used methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 130, January 2017, Pages 105–117
نویسندگان
, , , , ,