کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5662994 | 1590583 | 2017 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Clinical Validation of a Next-Generation Sequencing Genomic Oncology Panel via Cross-Platform Benchmarking against Established Amplicon Sequencing Assays
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
علوم پزشکی و سلامت
پزشکی و دندانپزشکی
انفورماتیک سلامت
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Next-generation sequencing (NGS) genomic oncology profiling assays have emerged as key drivers of personalized cancer care and translational research. However, validation of these assays to meet strict clinical standards has been historically problematic because of both significant assay complexity and a scarcity of optimal validation samples. Herein, we present the clinical validation of 76 genes from a novel 1212-gene large-scale hybrid capture cancer sequencing assay (University of Chicago Medicine OncoPlus) using full-data comparisons against multiple clinical NGS amplicon-based assays to yield dramatic increases in per-sample data comparison efficiency compared with previously published validations. Using a sample set of 104 normal, solid tumor, and hematopoietic malignancy specimens, head-to-head NGS data analyses allowed for 6.8 million individual clinical base call comparisons, including 2729 previously confirmed variants, with 100% sensitivity and specificity. University of Chicago Medicine OncoPlus showed excellent performance for detection of single-nucleotide variants, insertions/deletions up to 52 bp, and FLT3 internal tandem duplications of up to 102 bp or larger. Highly concordant copy number variant and ALK/RET/ROS1 gene fusion detection were also observed. In addition to underlining the efficiency of NGS validation via full-data benchmarking against existing clinical NGS assays, this study also highlights the degree of performance similarity between hybrid capture and amplicon assays that is attainable with the application of strict quality control parameters and optimized computational analytics.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: The Journal of Molecular Diagnostics - Volume 19, Issue 1, January 2017, Pages 43-56
Journal: The Journal of Molecular Diagnostics - Volume 19, Issue 1, January 2017, Pages 43-56
نویسندگان
Sabah Kadri, Bradley C. Long, Ibro Mujacic, Chao J. Zhen, Michelle N. Wurst, Shruti Sharma, Nadia McDonald, Nifang Niu, Sonia Benhamed, Jigyasa H. Tuteja, Tanguy Y. Seiwert, Kevin P. White, Megan E. McNerney, Carrie Fitzpatrick, Y. Lynn Wang,