کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
567580 876110 2011 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Utterance partitioning with acoustic vector resampling for GMM–SVM speaker verification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Utterance partitioning with acoustic vector resampling for GMM–SVM speaker verification
چکیده انگلیسی

Recent research has demonstrated the merit of combining Gaussian mixture models and support vector machine (SVM) for text-independent speaker verification. However, one unaddressed issue in this GMM–SVM approach is the imbalance between the numbers of speaker-class utterances and impostor-class utterances available for training a speaker-dependent SVM. This paper proposes a resampling technique – namely utterance partitioning with acoustic vector resampling (UP-AVR) – to mitigate the data imbalance problem. Briefly, the sequence order of acoustic vectors in an enrollment utterance is first randomized, which is followed by partitioning the randomized sequence into a number of segments. Each of these segments is then used to produce a GMM supervector via MAP adaptation and mean vector concatenation. The randomization and partitioning processes are repeated several times to produce a sufficient number of speaker-class supervectors for training an SVM. Experimental evaluations based on the NIST 2002 and 2004 SRE suggest that UP-AVR can reduce the error rate of GMM–SVM systems.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Speech Communication - Volume 53, Issue 1, January 2011, Pages 119–130
نویسندگان
, ,