کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
571794 1439293 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Figurative messages and affect in Twitter: Differences between #irony, #sarcasm and #not
ترجمه فارسی عنوان
پیام های تصویری و عاطفه در توییتر: تفاوت بین #irony، #sarcasm و #not
کلمات کلیدی
زبان تمثیلی؛ دانش عاطفی؛ طنز؛ طعنه؛ توییتر
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

The use of irony and sarcasm has been proven to be a pervasive phenomenon in social media posing a challenge to sentiment analysis systems. Such devices, in fact, can influence and twist the polarity of an utterance in different ways. A new dataset of over 10,000 tweets including a high variety of figurative language types, manually annotated with sentiment scores, has been released in the context of the task 11 of SemEval-2015. In this paper, we propose an analysis of the tweets in the dataset to investigate the open research issue of how separated figurative linguistic phenomena irony and sarcasm are, with a special focus on the role of features related to the multi-faceted affective information expressed in such texts. We considered for our analysis tweets tagged with #irony and #sarcasm, and also the tag #not, which has not been studied in depth before. A distribution and correlation analysis over a set of features, including a wide variety of psycholinguistic and emotional features, suggests arguments for the separation between irony and sarcasm. The outcome is a novel set of sentiment, structural and psycholinguistic features evaluated in binary classification experiments. We report about classification experiments carried out on a previously used corpus for #irony vs #sarcasm. We outperform in terms of F-measure the state-of-the-art results on this dataset. Overall, our results confirm the difficulty of the task, but introduce new data-driven arguments for the separation between #irony and #sarcasm. Interestingly, #not emerges as a distinct phenomenon.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 108, 15 September 2016, Pages 132–143
نویسندگان
, , , , ,