کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5760105 1623795 2017 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A novel method for in silico identification of regulatory SNPs in human genome
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم کشاورزی و بیولوژیک (عمومی)
پیش نمایش صفحه اول مقاله
A novel method for in silico identification of regulatory SNPs in human genome
چکیده انگلیسی
Regulatory single nucleotide polymorphisms (rSNPs), kind of functional noncoding genetic variants, can affect gene expression in a regulatory way, and they are thought to be associated with increased susceptibilities to complex diseases. Here a novel computational approach to identify potential rSNPs is presented. Different from most other rSNPs finding methods which based on hypothesis that SNPs causing large allele-specific changes in transcription factor binding affinities are more likely to play regulatory functions, we use a set of documented experimentally verified rSNPs and nonfunctional background SNPs to train classifiers, so the discriminating features are found. To characterize variants, an extensive range of characteristics, such as sequence context, DNA structure and evolutionary conservation etc. are analyzed. Support vector machine is adopted to build the classifier model together with an ensemble method to deal with unbalanced data. 10-fold cross-validation result shows that our method can achieve accuracy with sensitivity of ~78% and specificity of ~82%. Furthermore, our method performances better than some other algorithms based on aforementioned hypothesis in handling false positives. The original data and the source matlab codes involved are available at https://sourceforge.net/projects/rsnppredict/.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Theoretical Biology - Volume 415, 21 February 2017, Pages 84-89
نویسندگان
, , , , , , ,