کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5760182 | 1623777 | 2017 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An efficient and assumption-free method to approximate protein level distribution in the two-states gene expression model
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم کشاورزی و بیولوژیک
علوم کشاورزی و بیولوژیک (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Stochastic fluctuations at each step of gene expression might influence protein levels distributions across cell populations. However, current methods to model protein distribution of intrinsic gene expression dynamics are either computationally inefficient or rely on ad hoc assumptions, e.g., that the gene is always active. Taking advantage of the simple form of lower-order moments of distribution, we developed an efficient and assumption-free protein distribution approximation method (EFPD), for the two state gene expression model to accurately approximate the distribution. By EFPD, we computed nearly identical intensity of gene expression regulation at mRNA and protein level, implying a profound link between transcription and translation. Finally, by extending EFPD to approximate the distribution of protein level at any arbitrary temporal state, we proposed an explanation for the role of stochastic noise in gene expression in the context of a continuously changing environment. EFPD can be a powerful tool for modeling the particular molecular mechanisms of targeted gene expression pattern.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Theoretical Biology - Volume 433, 21 November 2017, Pages 1-7
Journal: Journal of Theoretical Biology - Volume 433, 21 November 2017, Pages 1-7
نویسندگان
Bingxiang Xu, Hao Ge, Zhihua Zhang,