کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5760314 1623780 2017 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Prediction of protein-protein interactions by label propagation with protein evolutionary and chemical information derived from heterogeneous network
ترجمه فارسی عنوان
پیش بینی تعاملات پروتئین-پروتئین با انتشار برچسب با اطلاعات تکاملی پروتئین و شیمیایی حاصل از شبکه های ناهمگن
کلمات کلیدی
تعاملات پروتئین-پروتئین، پیش بینی، شباهت شباهت شبکه، الگوریتم پخش برچسب،
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم کشاورزی و بیولوژیک (عمومی)
چکیده انگلیسی
Prediction of protein-protein interactions (PPIs) is of great significance. To achieve this, we propose a novel computational method for PPIs prediction based on a similarity network fusion (SNF) model for integrating the physical and chemical properties of proteins. Specifically, the physical and chemical properties of protein are the protein amino acid mutation rate and its hydrophobicity, respectively. The amino acid mutation rate is extracted using a BLOSUM62 matrix, which puts the protein sequence into block substitution matrix. The SNF model is exploited to fuse protein physical and chemical features of multiple data by iteratively updating each original network. Finally, the complementary features from the fused network are fed into a label propagation algorithm (LPA) for PPIs prediction. The experimental results show that the proposed method achieves promising performance and outperforms the traditional methods for the public dataset of H. pylori, Human, and Yeast. In addition, our proposed method achieves average accuracy of 76.65%, 81.98%, 84.56%, 84.01% and 84.38% on E. coli, C. elegans, H. sapien, H. pylori and M. musculus datasets, respectively. Comparison results demonstrate that the proposed method is very promising and provides a cost-effective alternative for predicting PPIs. The source code and all datasets are available at http://pan.baidu.com/s/1dF7rp7N.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Theoretical Biology - Volume 430, 7 October 2017, Pages 9-20
نویسندگان
, , , , , ,