کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5764286 1625915 2017 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The increased toxicity of UV-degraded nitroguanidine and IMX-101 to zebrafish larvae: Evidence implicating oxidative stress
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم آبزیان
پیش نمایش صفحه اول مقاله
The increased toxicity of UV-degraded nitroguanidine and IMX-101 to zebrafish larvae: Evidence implicating oxidative stress
چکیده انگلیسی
Insensitive munitions (IMs) improve soldier safety by decreasing sympathetic detonation during training and use in theatre. IMs are being increasingly deployed, although the environmental effects of IM constituents such as nitroguanidine (NQ) and IM mixture formulations such as IMX-101 remain largely unknown. In the present study, we investigated the acute (96 h) toxicity of NQ and IMX-101 to zebrafish larvae (21d post-fertilization), both in the parent materials and after the materials had been irradiated with environmentally-relevant levels of ultraviolet (UV) light. The UV-treatment increased the toxicity of NQ by 17-fold (LC50 decreased from 1323 mg/L to 77.2 mg/L). Similarly, UV-treatment increased the toxicity of IMX-101 by nearly two fold (LC50 decreased from 131.3 to 67.6 mg/L). To gain insight into the cause(s) of the observed UV-enhanced toxicity of the IMs, comparative molecular responses to parent and UV-treated IMs were assessed using microarray-based global transcript expression assays. Both gene set enrichment analysis (GSEA) and differential transcript expression analysis coupled with pathway and annotation cluster enrichment were conducted to provide functional interpretations of expression results and hypothetical modes of toxicity. The parent NQ exposure caused significant enrichment of functions related to immune responses and proteasome-mediated protein metabolism occurring primarily at low, sublethal exposure levels (5.5 and 45.6 mg/L). Enriched functions in the IMX-101 exposure were indicative of increased xenobiotic metabolism, oxidative stress mitigation, protein degradation, and anti-inflammatory responses, each of which displayed predominantly positive concentration-response relationships. UV-treated NQ had a fundamentally different transcriptomic expression profile relative to parent NQ causing positive concentration-response relationships for genes involved in oxidative-stress mitigation pathways and inhibited expression of multiple cadherins that facilitate zebrafish neurological and retinal development. Transcriptomic profiles were similar between UV-treated versus parent IMX-101 exposures. However, more significant and diverse enrichment as well as greater magnitudes of differential expression for oxidative stress responses were observed in UV-treated IMX-101 exposures. Further, transcriptomics indicated potential for cytokine signaling suppression providing potential connections between oxidative stress and anti-inflammatory responses. Given the overall results, we hypothesize that the increased toxicity of UV-irradiated NQ and the IMX-101 mixture result from breakdown products with elevated potential to elicit oxidative stress.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Aquatic Toxicology - Volume 190, September 2017, Pages 228-245
نویسندگان
, , , , , , , , ,