کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5771724 1630425 2017 57 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Infinite-dimensional reductive monoids associated to highest weight representations of Kac-Moody groups
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Infinite-dimensional reductive monoids associated to highest weight representations of Kac-Moody groups
چکیده انگلیسی
Starting with a highest weight representation of a Kac-Moody group over the complex numbers, we construct a monoid whose unit group is the image of the Kac-Moody group under the representation, multiplied by the nonzero complex numbers. We show that this monoid has similar properties to those of a J-irreducible reductive linear algebraic monoid. In particular, the monoid is unit regular and has a Bruhat decomposition, and the idempotent lattice of the generalized Renner monoid of the Bruhat decomposition is isomorphic to the face lattice of the convex hull of the Weyl group orbit of the highest weight.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 489, 1 November 2017, Pages 179-240
نویسندگان
, , ,