کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5771857 | 1630435 | 2017 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
When is a power of the Frobenius map on a noncommutative ring a homomorphism?
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let Ï(x)=xp be the Frobenius map on an associative unital ring R with prime characteristic p. It is well-known that, whenever R is commutative, Ïn is a ring homomorphism, for all positive integers n. The converse, however, is not true in general. Indeed, we prove that, if R is m-Engel, for some positive integer m, then there exists a positive integer n0 depending only on m such that, for all nâ¥n0, Ïn is a ring homomorphism with central image. Conversely, if any one of the following conditions holds: Ïn respects addition, Ïn respects multiplication, Ïn respects Lie multiplication, or the image of Ïn is commutative, then R is m-Engel, for some m depending only on n. Consequently, if Ï is surjective, and any one of the aforementioned conditions holds, then R must be commutative.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 479, 1 June 2017, Pages 159-172
Journal: Journal of Algebra - Volume 479, 1 June 2017, Pages 159-172
نویسندگان
David M. Riley,