کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5771925 | 1630428 | 2017 | 21 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
From submodule categories to the stable Auslander algebra
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We construct two functors from the submodule category of a representation-finite self-injective algebra Î to the module category of the stable Auslander algebra of Î. These functors factor through the module category of the Auslander algebra of Î. Moreover they induce equivalences from the quotient categories of the submodule category modulo their respective kernels and said kernels have finitely many indecomposable objects up to isomorphism. Their construction uses a recollement of the module category of the Auslander algebra induced by an idempotent and this recollement determines a characteristic tilting and cotilting module. If Î is taken to be a Nakayama algebra, then said tilting and cotilting module is a characteristic tilting module of a quasi-hereditary structure on the Auslander algebra. We prove that the self-injective Nakayama algebras are the only algebras with this property.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 486, 15 September 2017, Pages 98-118
Journal: Journal of Algebra - Volume 486, 15 September 2017, Pages 98-118
نویسندگان
Ãgmundur EirÃksson,