کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5773082 | 1631072 | 2017 | 28 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Path Laplacian operators and superdiffusive processes on graphs. I. One-dimensional case
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We consider a generalization of the diffusion equation on graphs. This generalized diffusion equation gives rise to both normal and superdiffusive processes on infinite one-dimensional graphs. The generalization is based on the k-path Laplacian operators Lk, which account for the hop of a diffusive particle to non-nearest neighbours in a graph. We first prove that the k-path Laplacian operators are self-adjoint. Then, we study the transformed k-path Laplacian operators using Laplace, factorial and Mellin transforms. We prove that the generalized diffusion equation using the Laplace- and factorial-transformed operators always produce normal diffusive processes independently of the parameters of the transforms. More importantly, the generalized diffusion equation using the Mellin-transformed k-path Laplacians âk=1âkâsLk produces superdiffusive processes when 1
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 523, 15 June 2017, Pages 307-334
Journal: Linear Algebra and its Applications - Volume 523, 15 June 2017, Pages 307-334
نویسندگان
Ernesto Estrada, Ehsan Hameed, Naomichi Hatano, Matthias Langer,