کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5773082 1631072 2017 28 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Path Laplacian operators and superdiffusive processes on graphs. I. One-dimensional case
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Path Laplacian operators and superdiffusive processes on graphs. I. One-dimensional case
چکیده انگلیسی
We consider a generalization of the diffusion equation on graphs. This generalized diffusion equation gives rise to both normal and superdiffusive processes on infinite one-dimensional graphs. The generalization is based on the k-path Laplacian operators Lk, which account for the hop of a diffusive particle to non-nearest neighbours in a graph. We first prove that the k-path Laplacian operators are self-adjoint. Then, we study the transformed k-path Laplacian operators using Laplace, factorial and Mellin transforms. We prove that the generalized diffusion equation using the Laplace- and factorial-transformed operators always produce normal diffusive processes independently of the parameters of the transforms. More importantly, the generalized diffusion equation using the Mellin-transformed k-path Laplacians ∑k=1∞k−sLk produces superdiffusive processes when 1
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 523, 15 June 2017, Pages 307-334
نویسندگان
, , , ,