| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 5773288 | 1631073 | 2017 | 20 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												On the correction equation of the Jacobi-Davidson method
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													اعداد جبر و تئوری 
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												The Jacobi-Davidson method is one of the most popular approaches for iteratively computing a few eigenvalues and their associated eigenvectors of a large matrix. The key of this method is to expand the search subspace via solving the Jacobi-Davidson correction equation, whose coefficient matrix is singular. It is believed by scholars that the Jacobi-Davidson correction equation is consistent and has a unique solution. In this paper, however, we point out that the correction equation either has a unique solution or has no solution, and we derive a computable necessary and sufficient condition for cheaply judging the existence and uniqueness of the solution. Furthermore, we consider the problem of stagnation and verify that if the Jacobi-Davidson method stagnates, then the corresponding Ritz value is a defective eigenvalue of the projection matrix. Finally, we provide a computable criterion for expanding the search subspace successfully. The properties of some alternative Jacobi-Davidson correction equations are also discussed.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 522, 1 June 2017, Pages 51-70
											Journal: Linear Algebra and its Applications - Volume 522, 1 June 2017, Pages 51-70
نویسندگان
												Gang Wu, Hong-Kui Pang,