کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5773375 1631077 2017 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Weighted least squares solutions of the equation AXB âˆ’ C = 0
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Weighted least squares solutions of the equation AXB âˆ’ C = 0
چکیده انگلیسی

Let H be a Hilbert space, L(H) the algebra of bounded linear operators on H and W∈L(H) a positive operator such that W1/2 is in the p-Schatten class, for some 1≤p<∞. Given A,B∈L(H) with closed range and C∈L(H), we study the following weighted approximation problem: analyze the existence of(0.1)minX∈L(H)‖AXB−C‖p,W, where ‖X‖p,W=‖W1/2X‖p. We also study the related operator approximation problem: analyze the existence of(0.2)minX∈L(H)(AXB−C)⁎W(AXB−C), where the order is the one induced in L(H) by the cone of positive operators. In this paper we prove that the existence of the minimum of (0.2) is equivalent to the existence of a solution of the normal equation A⁎W(AXB−C)=0. We also give sufficient conditions for the existence of the minimum of (0.1) and we characterize the operators where the minimum is attained.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 518, 1 April 2017, Pages 177-197
نویسندگان
, , ,