کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5773889 1631510 2017 33 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Regularity gradient estimates for weak solutions of singular quasi-linear parabolic equations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Regularity gradient estimates for weak solutions of singular quasi-linear parabolic equations
چکیده انگلیسی
This paper studies the Sobolev regularity for weak solutions of a class of singular quasi-linear parabolic problems of the form ut−div[A(x,t,u,∇u)]=div[F] with homogeneous Dirichlet boundary conditions over bounded spatial domains. Our main focus is on the case that the vector coefficients A are discontinuous and singular in (x,t)-variables, and dependent on the solution u. Global and interior weighted W1,p(ΩT,ω)-regularity estimates are established for weak solutions of these equations, where ω is a weight function in some Muckenhoupt class of weights. The results obtained are even new for linear equations, and for ω=1, because of the singularity of the coefficients in (x,t)-variables.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 263, Issue 12, 15 December 2017, Pages 8329-8361
نویسندگان
,