کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5773908 | 1631510 | 2017 | 43 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Threshold dynamics and ergodicity of an SIRS epidemic model with Markovian switching
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله
چکیده انگلیسی
This paper studies the spread dynamics of a stochastic SIRS epidemic model with nonlinear incidence and varying population size, which is formulated as a piecewise deterministic Markov process. A threshold dynamic determined by the basic reproduction number R0 is established: the disease can be eradicated almost surely if R0<1, while the disease persists almost surely if R0>1. The existing method for analyzing ergodic behavior of population systems has been generalized. The modified method weakens the required conditions and has no limitations for both the number of environmental regimes and the dimension of the considered system. When R0>1, the existence of a stationary probability measure is obtained. Furthermore, with the modified method, the global attractivity of the Ω-limit set of the system and the convergence in total variation to the stationary measure are both demonstrated under a mild extra condition.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 263, Issue 12, 15 December 2017, Pages 8873-8915
Journal: Journal of Differential Equations - Volume 263, Issue 12, 15 December 2017, Pages 8873-8915
نویسندگان
Dan Li, Shengqiang Liu, Jing'an Cui,