کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5774044 1413541 2017 35 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Zeta-determinants of Sturm-Liouville operators with quadratic potentials at infinity
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Zeta-determinants of Sturm-Liouville operators with quadratic potentials at infinity
چکیده انگلیسی
We consider Sturm-Liouville operators on a half line [a,∞),a>0, with potentials that are growing at most quadratically at infinity. Such operators arise naturally in the analysis of hyperbolic manifolds, or more generally manifolds with cusps. We establish existence and a formula for the associated zeta-determinant in terms of the Wronski-determinant of a fundamental system of solutions adapted to the boundary conditions. Despite being the natural objects in the context of hyperbolic geometry, spectral geometry of such operators has only recently been studied in the context of analytic torsion.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 262, Issue 5, 5 March 2017, Pages 3431-3465
نویسندگان
, , ,