کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5774044 | 1413541 | 2017 | 35 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Zeta-determinants of Sturm-Liouville operators with quadratic potentials at infinity
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We consider Sturm-Liouville operators on a half line [a,â),a>0, with potentials that are growing at most quadratically at infinity. Such operators arise naturally in the analysis of hyperbolic manifolds, or more generally manifolds with cusps. We establish existence and a formula for the associated zeta-determinant in terms of the Wronski-determinant of a fundamental system of solutions adapted to the boundary conditions. Despite being the natural objects in the context of hyperbolic geometry, spectral geometry of such operators has only recently been studied in the context of analytic torsion.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 262, Issue 5, 5 March 2017, Pages 3431-3465
Journal: Journal of Differential Equations - Volume 262, Issue 5, 5 March 2017, Pages 3431-3465
نویسندگان
Luiz Hartmann, Matthias Lesch, Boris Vertman,