کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5774271 | 1413553 | 2017 | 45 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Global smooth solutions in R3 to short wave-long wave interactions in magnetohydrodynamics
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We consider a Benney-type system modeling short wave-long wave interactions in compressible viscous fluids under the influence of a magnetic field. Accordingly, this large system now consists of the compressible MHD equations coupled with a nonlinear Schrödinger equation along particle paths. We study the global existence of smooth solutions to the Cauchy problem in R3 when the initial data are small smooth perturbations of an equilibrium state. An important point here is that, instead of the simpler case having zero as the equilibrium state for the magnetic field, we consider an arbitrary non-zero equilibrium state B¯ for the magnetic field. This is motivated by applications, e.g., Earth's magnetic field, and the lack of invariance of the MHD system with respect to either translations or rotations of the magnetic field. The usual time decay investigation through spectral analysis in this non-zero equilibrium case meets serious difficulties, for the eigenvalues in the frequency space are no longer spherically symmetric. Instead, we employ a recently developed technique of energy estimates involving evolution in negative Besov spaces, and combine it with the particular interplay here between Eulerian and Lagrangian coordinates.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 262, Issue 7, 5 April 2017, Pages 4129-4173
Journal: Journal of Differential Equations - Volume 262, Issue 7, 5 April 2017, Pages 4129-4173
نویسندگان
Hermano Frid, Junxiong Jia, Ronghua Pan,