کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5775945 | 1631755 | 2017 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The Crane equation uuxx=â2: The general explicit solution and a case study of Chebyshev polynomial series for functions with weak endpoint singularities
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The boundary value problem uuxx=â2 appears in Crane's theory of laminar convection from a point source. We show that the solution is real only when |x|â¤Ï/2. On this interval, denoting the constants of integration by A and s, the general solution is AV([xâs]/A) where the “Crane function” V is the parameter-free function V=exp(â{erfinv(â[2/Ï])x}2) and erfinv(z) is the inverse of the error function. V(x) is weakly singular at both endpoints; its Chebyshev polynomial coefficients an decrease proportionally to 1/n3. Exponential convergence can be restored by writing V(x)=ân=0a2nT2n(z[x]) where the mapping is z=arctanh(x/â§)L2+(arctanh(x/â§))2,â§=Ï/2. Another option is singular basis functions. Vâ(1âx2/â§2){1â0.216log(1âx2/â§2)} has a maximum pointwise error that is less 1/2000 of the maximum of the Crane function.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 301, 15 May 2017, Pages 214-223
Journal: Applied Mathematics and Computation - Volume 301, 15 May 2017, Pages 214-223
نویسندگان
John P. Boyd,