کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5776646 | 1632157 | 2017 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Polynomial approximation on Lissajous curves in the d-cube
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات محاسباتی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
For aâZ>0d we let âa(t):=(cosâ¡(a1t),cosâ¡(a2t),â¯,cosâ¡(adt)) denote an associated Lissajous curve. We study such Lissajous curves which have the quadrature property for the cube [â1,1]d thatâ«[â1,1]dp(x)dμd(x)=1Ïâ«0Ïp(âa(t))dt for all polynomials p(x)âV where V is either the space of d-variate polynomials of degree at most m or else the d-fold tensor product of univariate polynomials of degree at most m. Here dμd is the product Chebyshev measure (also the pluripotential equilibrium measure for the cube). Among such Lissajous curves with this property we study the ones for which maxpâVâ¡deg(p(âa(t))) is as small as possible. In the tensor product case we show that this is uniquely minimized by g:=(1,(m+1),(m+1)2,â¯,(m+1)dâ1). In the case of m=2n we construct discrete hyperinterpolation formulas which are easily evaluated with, for example, the Chebfun system ([6]).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Numerical Mathematics - Volume 116, June 2017, Pages 47-56
Journal: Applied Numerical Mathematics - Volume 116, June 2017, Pages 47-56
نویسندگان
L. Bos, S. De Marchi, M. Vianello,