| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 5776844 | 1413643 | 2017 | 5 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												An equivalence class decomposition of finite metric spaces via Gromov products
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													ریاضیات گسسته و ترکیبات
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												Let (X,d) be a finite metric space with elements Pi,i=1,â¦,n and with the distance functions dij. The Gromov Product of the “triangle” (Pi,Pj,Pk) with vertices Pi,Pj and Pk at the vertex Pi is defined by Îijk=1â2(dij+dikâdjk). We show that the collection of Gromov products determines the metric. We call a metric space Î-generic, if the set of all Gromov products at a fixed vertex Pi has a unique smallest element (for i=1,â¦,n). We consider the function assigning to each vertex Pi the edge {Pj,Pk} of the triangle (Pi,Pj,Pk) realizing the minimal Gromov product at Pi and we call this function the Gromov product structure of the metric space (X,d). We say two Î-generic metric spaces (X,d) and (X,dâ²) to be Gromov product equivalent, if the corresponding Gromov product structures are the same up to a permutation of X. For n=3,4 there is one (Î-generic) Gromov equivalence class and for n=5 there are three (Î-generic) Gromov equivalence classes. For n=6 we show by computer that there are 26 distinct (Î-generic) Gromov equivalence classes.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 340, Issue 8, August 2017, Pages 1928-1932
											Journal: Discrete Mathematics - Volume 340, Issue 8, August 2017, Pages 1928-1932
نویسندگان
												AyÅe Hümeyra Bilge, Derya Ãelik, Åahin Koçak,