کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5777595 1632968 2017 47 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Formation of a giant component in the intersection graph of a random chord diagram
ترجمه فارسی عنوان
تشکیل یک جزء غول در نمودار تقاطع یک نمودار وتر تصادفی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
چکیده انگلیسی
We study the number of chords and the number of crossings in the largest component of a random chord diagram when the chords are sparsely crossing. This is equivalent to studying the number of vertices and the number of edges in the largest component of the random intersection graph. Denoting the number of chords by n and the number of crossings by m, when m/(nlog⁡n) tends to a limit in (0,2/π2), we show that the chord diagram chosen uniformly at random from all the diagrams with given parameters has a component containing almost all the crossings and a positive fraction of chords. On the other hand, when m≤n/14, the size of the largest component is of order O(log⁡n). One of the key analytical ingredients is an asymptotic expression for the number of chord diagrams with parameters n and m for m<(2/π2)nlog⁡n, based on the Touchard-Riordan formula and the Jacobi identity for the generating function of Euler partition function.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 125, July 2017, Pages 33-79
نویسندگان
, ,