کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5778596 1633778 2017 49 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Goldilocks domains, a weak notion of visibility, and applications
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Goldilocks domains, a weak notion of visibility, and applications
چکیده انگلیسی
In this paper we introduce a new class of domains in complex Euclidean space, called Goldilocks domains, and study their complex geometry. These domains are defined in terms of a lower bound on how fast the Kobayashi metric grows and an upper bound on how fast the Kobayashi distance grows as one approaches the boundary. Strongly pseudoconvex domains and weakly pseudoconvex domains of finite type always satisfy this Goldilocks condition, but we also present families of Goldilocks domains that have low boundary regularity or have boundary points of infinite type. We will show that the Kobayashi metric on these domains behaves, in some sense, like a negatively curved Riemannian metric. In particular, it satisfies a visibility condition in the sense of Eberlein and O'Neill. This behavior allows us to prove a variety of results concerning boundary extension of maps and to establish Wolff-Denjoy theorems for a wide collection of domains.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 310, 13 April 2017, Pages 377-425
نویسندگان
, ,