کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
58943 1419429 2015 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Influence of Bi chemical state on the photocatalytic performance of Bi-doped NaTaO3
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
پیش نمایش صفحه اول مقاله
Influence of Bi chemical state on the photocatalytic performance of Bi-doped NaTaO3
چکیده انگلیسی

NaBiO3 and Bi(NO3)3 were used to synthesize Bi-doped NaTaO3. The influence of the Bi chemical state on the photocatalytic activity was investigated using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and diffused reflectance spectroscopy to study the structure, chemical state and light absorption characteristics, respectively. The photocatalytic activity was evaluated by the H2 evolution water splitting reaction. The monoclinic phase of NaTaO3 remained intact for the two Bi-doped samples, but the Ta–O–Ta bond was distorted from 180° after Bi doping. XPS results indicated that Bi3+ was doped into NaTaO3 with the Bi(NO3)3 precursor, while Bi5+ and Bi3+ were doped into NaTaO3 with the NaBiO3 precursor. The two samples showed identical light absorption, where doping with Bi extended the light absorption to long wavelength light as expected. However, Bi3+ doping did not promote the photocatalytic activity of NaTaO3, while Bi5+ and Bi3+ doping did. The distorted Ta–O–Ta bond from 180° due to doping with Bi was detrimental for charge carrier transfer in the photocatalytic process. In contrast, the vacancies or defects in the NaTaO3 lattice induced by Bi doping for charge balance were beneficial for charge carrier separation. The opposing action of these two factors resulted in the activity of the Bi3+-doped sample being comparable with pristine NaTaO3. For Bi5+- and Bi3+-doped NaTaO3, a high concentration of defects was induced by the high valence Bi5+ ion and this led to its higher photocatalytic activity. Our results indicated that charge carrier transfer is a priority factor in the photocatalytic process and the doping of a high valence ion in the ABO3 structure is a way to promote the separation of charge carriers.

Graphical AbstractDoping of Bi5+ and Bi3+ in NaTaO3 substituting for Na+promoted the separation of charge carriers, and the photocatalytic for H2 evolution was enhanced.Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chinese Journal of Catalysis - Volume 36, Issue 7, July 2015, Pages 969–974
نویسندگان
, , ,