کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5897804 1155276 2013 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Antifibrotic role of chemokine CXCL9 in experimental chronic pancreatitis induced by trinitrobenzene sulfonic acid in rats
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی علوم غدد
پیش نمایش صفحه اول مقاله
Antifibrotic role of chemokine CXCL9 in experimental chronic pancreatitis induced by trinitrobenzene sulfonic acid in rats
چکیده انگلیسی


- Several studies have shown that chemokine CXCL9 plays an important role in fibrotic diseases through its receptor CXCR3.
- Fibrogenesis dose not only accompany pancreatic diseases but is directly involved in their progression.
- The inhibition of fibrogenesis is considered to be a potential therapeutic strategy in chronic pancreatitis.
- Role of chemokine CXCL9 in chronic pancreatitis is still unknown.

Chemokines have been shown to play an important role in the pathogenesis of pancreatitis, but the role of chemokine CXCL9 in pancreatitis is poorly understood. The aim of this study was to investigate whether CXCL9 was a modulating factor in chronic pancreatitis. Chronic pancreatitis was induced in Sprague-Dawley rats by intraductal infusion of trinitrobenzene sulfonic acid (TNBS) and CXCL9 expression was assessed by immunohistochemistry, Western blot analysis and enzyme linked immunosorbent assay (ELISA). Recombinant human CXCL9 protein (rCXCL9), neutralizing antibody and normal saline (NS) were administered to rats with chronic pancreatitis by subcutaneous injection. The severity of fibrosis was determined by measuring hydroxyproline in pancreatic tissues and histological grading. The effect of rCXCL9 on activated pancreatic stellate cells (PSCs) in vitro was examined and collagen 1α1, TGF-β1 and CXCR3 expression was assessed by Western blot analysis in isolated rat PSCs. Chronic pancreatic injury in rats was induced after TNBS treatment and CXCL9 protein was markedly upregulated during TNBS-induced chronic pancreatitis. Although parenchymal injury in the pancreas was not obviously affected after rCXCL9 and neutralizing antibody administration, rCXCL9 could attenuate fibrogenesis in TNBS-induced chronic pancreatitis in vivo and exerted antifibrotic effects in vitro, suppressing collagen production in activated PSCs. In conclusion, CXCL9 is involved in the modulation of pancreatic fibrogenesis in TNBS-induced chronic pancreatitis in rats, and may be a therapeutic target in pancreatic fibrosis.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Cytokine - Volume 64, Issue 1, October 2013, Pages 382-394
نویسندگان
, , , , , , , , , , , , , ,