کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5906637 1159981 2013 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Parameter optimization and sensitivity analysis for large kinetic models using a real-coded genetic algorithm
ترجمه فارسی عنوان
بهینه سازی پارامتر و تجزیه و تحلیل حساسیت برای مدل های بزرگ جنبشی با استفاده از یک الگوریتم ژنتیک واقعی
کلمات کلیدی
حساسیت پارامتر حساسیت پارامتر جهانی، همبستگی پارامتر، مدل جنبشی، الگوریتم ژنتیک واقعی،
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی ژنتیک
چکیده انگلیسی

Dynamic modeling is a powerful tool for predicting changes in metabolic regulation. However, a large number of input parameters, including kinetic constants and initial metabolite concentrations, are required to construct a kinetic model. Therefore, it is important not only to optimize the kinetic parameters, but also to investigate the effects of their perturbations on the overall system. We investigated the efficiency of the use of a real-coded genetic algorithm (RCGA) for parameter optimization and sensitivity analysis in the case of a large kinetic model involving glycolysis and the pentose phosphate pathway in Escherichia coli K-12. Sensitivity analysis of the kinetic model using an RCGA demonstrated that the input parameter values had different effects on model outputs. The results showed highly influential parameters in the model and their allowable ranges for maintaining metabolite-level stability. Furthermore, it was revealed that changes in these influential parameters may complement one another. This study presents an efficient approach based on the use of an RCGA for optimizing and analyzing parameters in large kinetic models.

264Highlights► Sensitivity analysis is a systematic study of how varying inputs affect the output. ► We used a genetic algorithm for sensitivity analysis in a kinetic model. ► Highly influential parameters and their allowable ranges were shown in the results. ► It is possible that changes in the influential parameters complement one another.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Gene - Volume 518, Issue 1, 10 April 2013, Pages 84-90
نویسندگان
, , , , ,