کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5963744 | 1576129 | 2016 | 9 صفحه PDF | دانلود رایگان |
BackgroundMyocardial ischemia is associated with alterations in cardiac metabolism, resulting in decreased fatty acid oxidation and increased lipid accumulation. Here we investigate how myocardial lipid content and dynamics affect the function of the ischemic heart, and focus on the role of the lipid droplet protein perilipin 5 (Plin5) in the pathophysiology of myocardial ischemia.Methods and resultsWe generated Plin5â/â mice and found that Plin5 deficiency dramatically reduced the triglyceride content in the heart. Under normal conditions, Plin5â/â mice maintained a close to normal heart function by decreasing fatty acid uptake and increasing glucose uptake, thus preserving the energy balance. However, during stress or myocardial ischemia, Plin5 deficiency resulted in myocardial reduced substrate availability, severely reduced heart function and increased mortality. Importantly, analysis of a human cohort with suspected coronary artery disease showed that a common noncoding polymorphism, rs884164, decreases the cardiac expression of PLIN5 and is associated with reduced heart function following myocardial ischemia, indicating a role for Plin5 in cardiac dysfunction.ConclusionOur findings indicate that Plin5 deficiency alters cardiac lipid metabolism and associates with reduced survival following myocardial ischemia, suggesting that Plin5 plays a beneficial role in the heart following ischemia.
Journal: International Journal of Cardiology - Volume 219, 15 September 2016, Pages 446-454