کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
606100 1454512 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Decoupling and elucidation of surface-driven processes during inorganic mineralization on virus templates
ترجمه فارسی عنوان
جداسازی و کشف فرایندهای سطحی در طول کانی سازی غیر معدنی بر روی قالب های ویروسی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی شیمی کلوئیدی و سطحی
چکیده انگلیسی

There is a lack of fundamental information about the molecular processes governing biomineralization of inorganic materials to produce nanostructures on biological templates. This information is essential for the directed synthesis of high quality nanomaterials via biotemplating. We characterized palladium (Pd) mineralization via the individual adsorption, reduction, and nanocrystal growth processes, which simultaneously occur during the hydrothermal synthesis on the Tobacco mosaic virus (TMV). The adsorption of precursor and reduction of palladium were decoupled through UV–vis Spectroscopy and in situ X-ray absorption spectroscopy studies. The role of additional cysteine (Cys) residues, ionic strength, and coating density on the fundamental parameters describing these processes were quantitatively evaluated. Primary nanocrystal growth and structural orientation of Pd nanoparticles was characterized using in situ small angle X-ray scattering. The adsorption, reduction of Pd species, and nanocrystal sizes were significantly changed on addition of Cys residues to the amino terminus of the TMV coat protein. Reduction of Pd on an already coated virion was dependent on the Pd surface area, and was hindered by the presence of residual salt. Furthermore, trends in Pd adsorption intensity and capacity suggested that chloride ions affected the adsorption equilibrium. Application of this fundamental approach with further optimization of parameters dictating biomineralization would facilitate directed synthesis and scale up of bioinorganic systems.

Biomineralization during the hydrothermal synthesis of Pd on TMVs.Figure optionsDownload high-quality image (92 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Colloid and Interface Science - Volume 483, 1 December 2016, Pages 165–176
نویسندگان
, , , , , , ,