کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
606587 1454535 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Impact of particle nanotopology on water transport through hydrophobic soils
ترجمه فارسی عنوان
تأثیر نانوتکنولوژی ذرات بر انتقال آب از طریق خاک های هیدروفیفی
کلمات کلیدی
نانوتوپی ذرات، خاک غیر خیس، ماده آلی خاک، حمل و نقل آب آب خالص آب
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی شیمی کلوئیدی و سطحی
چکیده انگلیسی

The impact of non- and poorly wetting soils has become increasingly important, due to its direct influence on the water-limited potential yield of rain-fed grain crops at a time of enhanced global competition for fresh water. This study investigates the physical and compositional mechanisms underlying the influence of soil organic matter (SOM) on the wetting processes of model systems. These model systems are directly related to two sandy wheat-producing soils that have contrasting hydrophobicities. Atomic force microscopy (AFM), contact angle and Raman micro-spectroscopy measurements on model planar and particulate SOM-containing surfaces demonstrated the role of the hierarchical surface structure on the wetting dynamics of packed particulate beds. It was found that a nanoscale surface topology is superimposed over the microscale roughness of the packed particles, and this controls the extent of water ingress into particulate packed beds of these particles. Using two of the dominant component organic species found in the SOM of the two soils used in this study, it was found that the specific interactions taking place between the SOM components, rather than their absolute quantities, dictated the formation of highly hydrophobic surface nanotopologies. This hydrophobicity was demonstrated, using micro-Raman imaging, to arise from the surface being in a composite Cassie–Baxter wetting state. Raman imaging demonstrated that the particle surface nanotopography influenced the degree of air entrapment in the interstices within the particle bed. The influence of a conventional surfactant on the wetting kinetics of both the model planar surfaces and packed particulate beds was quantified in terms of their respective advancing contact angles and the capillary wetting force vector. The information obtained for all of the planar and particulate surfaces, together with that obtained for the two soils, allowed linear relationships to be obtained in plots of the contact angle data as a function of the wetting liquid surface tensions. These linear relationships were found to reflect the mechanisms underlying the surface energy parameter requirements for wetting.

Figure optionsDownload high-quality image (179 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Colloid and Interface Science - Volume 460, 15 December 2015, Pages 61–70
نویسندگان
, , , , ,