کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
606693 1454543 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
DNA-modulated photo-transformation of AgCl to silver nanoparticles: visiting the formation mechanism
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی شیمی کلوئیدی و سطحی
پیش نمایش صفحه اول مقاله
DNA-modulated photo-transformation of AgCl to silver nanoparticles: visiting the formation mechanism
چکیده انگلیسی

Solution-phase synthesis and post-synthetic bio-modification have continued to play a dominant role in preparation of nanostructured biomaterials. Heterogeneous nucleation and growth that occur much more often in nature, however, remain rarely explored in nano-biomaterials research. We have newly developed a DNA-modulated photoconversion approach to uniform silver nanoparticles that afford DNA-directed recognition and multi-mode imaging. The present study was aimed at understanding the rapid heterogeneous nucleation and growth of AgNPs at the solid–liquid interface with the aid of DNA. Dynamic changes in absorbance, size and morphology of silver nanostructures were monitored and analyzed to clarify the growth kinetics, which indicated a synthetic route involving synchronous growth of silver nanostructures and the fragmentation and consumption of AgCl. Various stabilizers, including polymer and amino acids, were assessed and compared with respect to the efficacy in photoconversion of AgCl. DNA was found to offer the best monodispersity and the smallest diameter for the resultant AgNPs, due to its strong interactions to silver species as well as excellent charge dispersion ability. By controlling the physicochemical property of DNA through choice of pH and ionic strength, we have demonstrated tunable structure and composition of the nanoparticles.

Figure optionsDownload high-quality image (201 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Colloid and Interface Science - Volume 452, 15 August 2015, Pages 224–234
نویسندگان
, , , , , ,