کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
608363 880580 2012 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Electroosmotic flow in a water column surrounded by an immiscible liquid
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی شیمی کلوئیدی و سطحی
پیش نمایش صفحه اول مقاله
Electroosmotic flow in a water column surrounded by an immiscible liquid
چکیده انگلیسی

In this paper, we conducted numerical simulation of the electroosmotic flow in a column of an aqueous solution surrounded by an immiscible liquid. While governing equations in this case are the same as that in the electroosmotic flow through a microchannel with solid walls, the main difference is the types of interfacial boundary conditions. The effects of electric double layer (EDL) and surface charge (SC) are considered to apply the most realistic model for the velocity boundary condition at the interface of the two fluids. Effects on the flow field of ς-potential and viscosity ratio of the two fluids were investigated. Similar to the electroosmotic flow in microchannels, an approximately flat velocity profile exists in the aqueous solution. In the immiscible fluid phase, the velocity decreases to zero from the interface toward the immiscible fluid phase. The velocity in both phases increases with ς-potential at the interface of the two fluids. The higher values of ς-potential also increase the slip velocity at the interface of the two fluids. For the same applied electric field and the same ς-potential at the interface of the two fluids, the more viscous immiscible fluid, the slower the system moves. The viscosity of the immiscible fluid phase also affects the flatness of the velocity profile in the aqueous solution.

Figure optionsDownload high-quality image (29 K)Download as PowerPoint slideHighlights
► Electroosmotic flow of aqueous solution surrounded by immiscible liquid is studied.
► Velocity in both phases increases with ς-potential at interface of the two fluids.
► Higher values of ς-potential increase slip velocity at interface of the two fluids.
► The more viscous immiscible fluid, the slower the system moves.
► Viscosity of immiscible fluid affects flatness of velocity field in aqueous solution.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Colloid and Interface Science - Volume 372, Issue 1, 15 April 2012, Pages 207–211
نویسندگان
, , , ,