کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
60892 47551 2015 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Selective oxidation and oxidative dehydrogenation of hydrocarbons on bismuth vanadium molybdenum oxide
ترجمه فارسی عنوان
اکسیداسیون انتخابی و دبی هیدروژن اکسیداتیو هیدروکربن ها بر روی بیسموت وانادیم مولیبدن اکسید
کلمات کلیدی
بیسموت وانادیوم مولیبدن اکسید، اکسیداسیون انتخابی، دهیدرژی اکسیداتیو، بوتن
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
چکیده انگلیسی


• Oxidative dehydrogenation of butene to butadiene occurs via a Mars van Krevelen mechanism.
• Oxidation of butene to methacrolein occurs via a Mars van Krevelen mechanism.
• Oxidative dehydrogenation of propane to propene occurs via a Mars van Krevelen mechanism.
• The apparent activation energies correlate with the strength of the weakest CH bond.

A systematic investigation of the oxidative dehydrogenation of propane to propene and 1- and 2-butene to 1,3-butadiene, and the selective oxidation of isobutene to methacrolein was carried out over Bi1−x/3V1−xMoxO4 (x = 0–1) with the aim of defining the effects of catalyst and reactant composition on the reaction kinetics. This work has revealed that the reaction kinetics can differ significantly depending on the state of catalyst oxidation, which in turn depends on the catalyst composition and the reaction conditions. Under conditions where the catalyst is fully oxidized, the kinetics for the oxidation of propene to acrolein and isobutene to methacrolein, and the oxidative dehydrogenation of propane to propene, 1-butene and trans-2-butene to butadiene are very similar—first order in the partial pressure of the alkane or alkene and zero order in the partial pressure of oxygen. These observations, together with XANES and UV–Vis data, suggest that all these reactions proceed via a Mars van Krevelen mechanism involving oxygen atoms in the catalysts and that the rate-limiting step involves cleavage of the weakest CH bond in the reactant. Consistent with these findings, the apparent activation energy and pre-exponential factor for both oxidative dehydrogenation and selective oxidation correlate with the dissociation energy of the weakest CH bond in the reactant. As the reaction temperature is lowered, catalyst reoxidation can become rate-limiting, the transition to this regime depending on ease of catalyst reduction and effectiveness of the reacting hydrocarbons as a reducing agent. A third regime is observed for isobutene oxidation at lower temperatures, in which the catalyst is more severely reduced and oxidation now proceeds via reaction of molecular oxygen, rather than catalyst lattice oxygen, with the reactant.

Figure optionsDownload high-quality image (191 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Catalysis - Volume 325, May 2015, Pages 87–100
نویسندگان
, , , ,