کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
612822 880707 2006 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effects of system parameters on making aluminum alloy lotus
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی شیمی کلوئیدی و سطحی
پیش نمایش صفحه اول مقاله
Effects of system parameters on making aluminum alloy lotus
چکیده انگلیسی

In the present article, stable biomimetic superhydrophobic surfaces on aluminum alloy are obtained by wet chemical etching following modification with crosslinked silicone elastomer, perfluorononane (C9F20), and perfluoropolyether (PFPE), respectively. The formation and structure of superhydrophobic surfaces were characterized by means of scanning electron microscopy (SEM), water contact angle measurement, Fourier transform infrared spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The effects of surface roughness resulted from the etching time, and the concentration of NaOH aqueous solution on the superhydrophobicity of the surfaces have been discussed in detail. The optimal surface roughness of starting material is about 0.05–0.5 μm and the resulting surface roughness should be controlled between 2.7 and 5.8 μm in order to realize the superhydrophobicity on aluminum alloy; if the concentration of NaOH aqueous solution is about 4 wt%, the best treatment time is between 2 and 4 h to form a surface roughness changing from 2.7 to 5.8 μm. The trapped air with the binary structure plays a key role in fabricating superhydrophobic surface on aluminum alloy. In other words, the unusual structure on the surface, which has a binary structure consisted of microprotrusions and nanoparticles, plays a very vital role in constructing of the stable biomimetic superhydrophobic surface on aluminum alloy.

The relationships between water contact angles and the resulting surface roughness treated with 1 M aqueous solution for 2 h and then modified with PDMSVT or C9F20, respectively, showing the resulting surface roughness is vital for forming superhydrophobicity.Figure optionsDownload high-quality image (56 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Colloid and Interface Science - Volume 303, Issue 1, 1 November 2006, Pages 298–305
نویسندگان
, , , ,