کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
612869 880709 2006 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adsorption mechanisms of selenium oxyanions at the aluminum oxide/water interface
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی شیمی کلوئیدی و سطحی
پیش نمایش صفحه اول مقاله
Adsorption mechanisms of selenium oxyanions at the aluminum oxide/water interface
چکیده انگلیسی

Sorption processes at the mineral/water interface typically control the mobility and bioaccessibility of many inorganic contaminants such as oxyanions. Selenium is an important micronutrient for human and animal health, but at elevated concentrations selenium toxicity is a concern. The objective of this study was to determine the bonding mechanisms of selenate (SeO2−4) and selenite (SeO2−3) on hydrous aluminum oxide (HAO) over a wide range of reaction pH using extended X-ray absorption fine structure (EXAFS) spectroscopy. Additionally, selenate adsorption on corundum (α-Al2O3) was studied to determine if adsorption mechanisms change as the aluminum oxide surface structure changes. The overall findings were that selenite forms a mixture of outer-sphere and inner-sphere bidentate-binuclear (corner-sharing) surface complexes on HAO, selenate forms primarily outer-sphere surface complexes on HAO, and on corundum selenate forms outer-sphere surface complexes at pH 3.5 but inner-sphere monodentate surface complexes at pH 4.5 and above. It is possible that the lack of inner-sphere complex formation at pH 3.5 is caused by changes in the corundum surface at low pH or secondary precipitate formation. The results are consistent with a structure-based reactivity for metal oxides, wherein hydrous metal oxides form outer-sphere complexes with sulfate and selenate, but inner-sphere monodentate surface complexes are formed between sulfate and selenate and α-Me2O3.

Selenium oxyanions adsorption on two aluminum oxide minerals was studied with Se K-edge XANES and EXAFS spectroscopy. It was learned that the bonding mechanisms directly relate to the surface structure of the aluminum oxide minerals.Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Colloid and Interface Science - Volume 303, Issue 2, 15 November 2006, Pages 337–345
نویسندگان
,