کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
613601 880725 2006 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Removal of As(V) by Cu(II)-, Ni(II)-, or Co(II)-doped goethite samples
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی شیمی کلوئیدی و سطحی
پیش نمایش صفحه اول مقاله
Removal of As(V) by Cu(II)-, Ni(II)-, or Co(II)-doped goethite samples
چکیده انگلیسی

The present study reports removal of As(V) by adsorption onto laboratory-prepared pure and Cu(II)-, Ni(II)-, and Co(II)-doped goethite samples. The X-ray diffraction patterns showed only goethite as the crystalline phase. Doping of ions in the goethite matrix resulted in shift of d-values. Various parameters chosen for adsorption were nature of adsorbent, percentage of doped cations in goethite matrix, contact time, solution pH, and percentage of adsorbate. It was observed that the pHpzc of the goethite surface depended on the nature and concentration of metal ions. The surface area as well as the loading capacity increased with the increase of dopant percentage in goethite matrix. A maximum loading capacity of 19.55 mg/g was observed for 2.7% Cu(II)-doped goethite. The adsorption kinetics for Ni(II), Co(II) and for undoped goethite attained a quasi-equilibrium state after 30 min with almost negligible adsorption beyond this time. In case of Cu(II)-doped goethite samples, the quasi-equilibrium state for As(V) adsorption was observed after 60 min. At each studied pH condition, it was observed that the percentage of adsorption of As(V) decreased in the order Cu(II)-doped goethite ⩾ Ni(II)-doped goethite > Co(II)-doped goethite > pure goethite. The adsorption followed: Langmuir isotherm, indicating monolayer formation.

As(V) adsorption increased with the increase in % of doped ion in goethite matrix. Initial adsorption kinetics were observed to be very fast and quasi-equilibrium seems to be achieved within 60 min. The loading capacities for Cu, Ni, Co (∼1%) doped and pure goethite samples were 16.94, 15.83, 14.01, and 11.4 mg/g, respectively, at pH 2.Figure optionsDownload high-quality image (50 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Colloid and Interface Science - Volume 298, Issue 1, 1 June 2006, Pages 6–12
نویسندگان
, , , ,