کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6151 466 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Enhanced liver progenitor cell survival and differentiation in vivo by spheroid implantation in a vascularized tissue engineering chamber
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
Enhanced liver progenitor cell survival and differentiation in vivo by spheroid implantation in a vascularized tissue engineering chamber
چکیده انگلیسی

Liver tissue engineering is hampered by poor implanted cell survival due to inadequate vascularization and cell–cell/cell–matrix interactions. Here, we use liver progenitor cell (LPC) spheroids to enhance cell–cell/cell–matrix interactions, with implantation into an angiogenic in vivo mouse chamber. Spheroids were generated in vitro in methylcellulose medium. Day 2 spheroids were optimal for implantation (22,407 +/−645 cells/spheroid), demonstrating maximal proliferation (Ki67 immunolabeling) and minimal apoptosis (caspase-3 immunolabelling). In vivo chambers established bilaterally on epigastric vessels of immunodeficient mice were implanted with equivalent numbers of LPCs as a cell suspension (200,000 cells), or spheroids (9 spheroids). At day 14, a trend of increased LPC survival was observed in spheroid-implanted chambers [pan-cytokeratin (panCK+) cells, p = 0.38, 2.4 fold increase)], with significantly increased differentiation [cytokeratin 18 (CK18+) cells, p < 0.002, 5.1 fold increase)] compared to cell suspension-implanted chambers. At day 45, both measures were significantly increased in spheroid-implanted chambers (panCK, p < 0.006, 16 fold increase) (CK18, p < 0.019, 6 fold increase). Hepatic acini/plates of CK18 + cells expressed hepatocyte nuclear factor 4-α and β-catenin, indicating ongoing hepatic differentiation. Spheroid cell-delivery significantly increased LPC survival and differentiation compared to conventional cell suspensions. This LPC spheroid/vascularized chamber model has clinical potential to generate three-dimensional vascularized liver tissue for liver replacement.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomaterials - Volume 34, Issue 16, May 2013, Pages 3992–4001
نویسندگان
, , , , , , , , ,