کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
619749 | 1455067 | 2007 | 5 صفحه PDF | دانلود رایگان |

Many biomaterials are being developed to repair or replace articular cartilage. One of these materials, poly(vinyl alcohol) (PVA) hydrogel prepared from aqueous solution of the polymer by freezing and thawing method may exhibit the mechanical properties required to withstand the harsh environment of diarthrodial joints. To better understand how PVA hydrogel friction is affected by different variable factors, a three-factor, three-level designed orthogonal experiment was developed. Factors include lubricant, sliding speed, and normal load. Friction coefficient of the PVA hydrogel was found to depend significantly on load and sliding speed. Lubricant had little effects on the friction coefficient. Friction coefficient of the PVA hydrogel decreased with the increase of sliding speed and the friction coefficient approximately increased linearly with the increasing load. Average friction coefficient decreased from 0.0447 to 0.0379 while the sliding speed increased from 0.06 to 0.22 m/s. Average friction coefficient increased from 0.0276 to 0.0546, almost increasing one time, while the load increased from 5 to 15 N.
Journal: Wear - Volume 262, Issues 7–8, 15 March 2007, Pages 1021–1025