کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
62002 47616 2010 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Kinetic study and H2S effect on refractory DBTs desulfurization in a heavy gasoil
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
پیش نمایش صفحه اول مقاله
Kinetic study and H2S effect on refractory DBTs desulfurization in a heavy gasoil
چکیده انگلیسی

The removal evolution of six refractory individual S-compounds, i.e. DBT, 4-methyl-DBT, 4,6-dimethyl-DBT, 4-ethyl-6-methyl-DBT, 2,4,6-trimethyl-DBT, and 2,4,6,8-tetramethyl-DBT, and five groups of S-compounds with one to four substitutions has been studied during the deep desulfurization process of a heavy gasoil in a mini scale-structured bed reactor. The reactivity of the sulfur compounds was investigated by hydrotreating the gasoil with a commercial NiMo/γ-Al2O3 catalyst under commercial operation conditions of temperature (563–623 K), total pressure (50 × 105 Pa), liquid hourly space velocity (LHSV) (0.7–3 h−1), and gas-to-liquid ratio (400–600 NmH23/moil3). Moreover, the inhibiting effect of the hydrogen sulfide on the hydrodesulfurization rates of the S-compounds has been studied by performing tests with various H2S partial pressures. The results showed that the most refractory sulfur component is the 4,6-dimethyl-DBT constituting the major compound in the hydrotreated product with 50 ppm total sulfur and practically the only S-compound in the product with 10 ppm total sulfur. It has been verified that differences in HDS reactivity among DBT, 4-methyl-DBT, and 4,6-dimethyl-DBT in the real feed are lower than those commonly referred to in model feeds. The reactivity of the S-compounds is affected by the presence of the adsorbed on the catalyst active sites hydrogen sulfide and this effect appears decreasing with the number of the substituents of DBTs. The activation energy of DBTs obtained in the current work appears to be higher for the non-substituted DBT, which mainly reacts through the hydrogenolysis route, and to decrease for the substituted DBTs, which react through the hydrogenation route.

Apparent reaction rate constants of DBTs groups and DBTs individual compounds. Obtained for LHSV: 1–3 h−1, temperature: 613 K, hydrogen pressure: 50 × 105 Pa and gas to liquid ratio: 400 Nm3/m3.Figure optionsDownload high-quality image (68 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Catalysis - Volume 269, Issue 1, 1 January 2010, Pages 169–178
نویسندگان
, , ,