کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
620211 1455074 2006 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Prediction of automotive friction material characteristics using artificial neural networks-cold performance
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی شیمی کلوئیدی و سطحی
پیش نمایش صفحه اول مقاله
Prediction of automotive friction material characteristics using artificial neural networks-cold performance
چکیده انگلیسی

In this study, an artificial neural network technique was used to predict the cold performance of the automotive friction material. Cold performance was predicted for two cases: (i) before and (ii) after fading and recovery tests. Predictions were related to the brake factor C values versus 26 input parameters. The input parameters are defined by the friction material formulation (18 parameters), manufacturing conditions (5 parameters), and testing conditions (3 parameters). For these predictions, the five types of the friction materials were produced and tested. The quality of prediction has been evaluated by comparison of the real results obtained during testing on the single-end full-scale inertia dynamometer and predicted ones. The 15 different architectures of the artificial neural networks have been investigated. The five training algorithms have been employed for the artificial neural networks training.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Wear - Volume 261, Issues 3–4, 30 August 2006, Pages 269–282
نویسندگان
, ,