کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
620238 | 1455077 | 2006 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Impact wear resistance of WC/Hadfield steel composite and its interfacial characteristics
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
شیمی کلوئیدی و سطحی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A composite coating of WC/Hadfield steel was fabricated through centrifugal casting process to improve the impact wear resistance of Hadfield steel under the conditions of low or medium impact energy. The interfacial structure between WC ceramic particle and the steel matrix was analyzed with scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The impact wear tests at different impact energy were carried out on a MLD-10 type impact wear rig to investigate the wear-resistant properties of three kinds of composites with different WC particle sizes. For comparison, the wear tests of Hadfield steel were also carried out under the same conditions. The results show that WC particles are partially dissolved in the steel during centrifugal casting. The elements W, C and Fe in steel react to form new carbides such as Fe3W3C or M23C6, which precipitate around former WC particles forming fine particles during subsequent solidification. So the interface between WC particles and Hadfield steel matrix is a strong metallurgical bonding. The composite reinforced with smaller WC particles has better impact wear resistance than that of Hadfield steel regardless of impact energy level. Whereas, the composite reinforced with larger WC particles has better impact wear resistance property than that of Hadfield steel when the impact energy is small but an opposite result is gained when the impact energy is higher. So, it is very essential to choose suitable size of WC particles as reinforcement in Hadfield steel to make the composite material more durable in the service conditions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Wear - Volume 260, Issues 7â8, 7 April 2006, Pages 728-734
Journal: Wear - Volume 260, Issues 7â8, 7 April 2006, Pages 728-734
نویسندگان
Guo-Shang Zhang, Jian-Dong Xing, Yi-Min Gao,