کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6256049 1612925 2016 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modulation of learning and memory by the targeted deletion of the circadian clock gene Bmal1 in forebrain circuits
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب رفتاری
پیش نمایش صفحه اول مقاله
Modulation of learning and memory by the targeted deletion of the circadian clock gene Bmal1 in forebrain circuits
چکیده انگلیسی


• Development of a mouse model with disruption of the clock gene Bmal1 in forebrain neurons.
• SCN function is not altered in Bmal1 forebrain knockout mice.
• Bmal1 forebrain knockout mice exhibit deficits in novel object location and Barnes maze.
• Affective behavior is not altered in Bmal1 forebrain knockout mice.

A large body of literature has shown that the disruption of circadian clock timing has profound effects on mood, memory and complex thinking. Central to this time keeping process is the master circadian pacemaker located within the suprachiasmatic nucleus (SCN). Of note, within the central nervous system, clock timing is not exclusive to the SCN, but rather, ancillary oscillatory capacity has been detected in a wide range of cell types and brain regions, including forebrain circuits that underlie complex cognitive processes. These observations raise questions about the hierarchical and functional relationship between the SCN and forebrain oscillators, and, relatedly, about the underlying clock-gated synaptic circuitry that modulates cognition. Here, we utilized a clock knockout strategy in which the essential circadian timing gene Bmal1 was selectively deleted from excitatory forebrain neurons, whilst the SCN clock remained intact, to test the role of forebrain clock timing in learning, memory, anxiety, and behavioral despair. With this model system, we observed numerous effects on hippocampus-dependent measures of cognition. Mice lacking forebrain Bmal1 exhibited deficits in both acquisition and recall on the Barnes maze. Notably, loss of forebrain Bmal1 abrogated time-of-day dependent novel object location memory. However, the loss of Bmal1 did not alter performance on the elevated plus maze, open field assay, and tail suspension test, indicating that this phenotype specifically impairs cognition but not affect. Together, these data suggest that forebrain clock timing plays a critical role in shaping the efficiency of learning and memory retrieval over the circadian day.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Behavioural Brain Research - Volume 308, 15 July 2016, Pages 222–235